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Abstract

The equation of motion dM=dt ¼ cM� BðtÞ is solved for the case BðtÞ ¼ jBpðtÞ þ kBe. The field Be is a small static field, typically

the earth�s field. The field BpðtÞ decays exponentially toward zero with time constant T. This decay is produced by an overdamped

switching transient that occurs near the end of the rapid cutoff of the coil current used to polarize the sample. It is assumed that Bp is

initially large compared to Be, and that magnetization M is initially along the resultant field B. Exact solutions are obtained nu-

merically for several decay time constants of Bp, and the motion of M is depicted graphically. It is found that for adiabatic passage,

the final cone angle b of the precession in field Be is related to the decay time constant of Bp by b ¼ 2e�ðp=2ÞxeT . This is confirmed by

measurements of the amplitudes of the ensuing free-precession signals for various decay rates of Bp. Near-perfect adiabatic passage

(magnetization aligned within 2� of the earth�s field) can be achieved for time constants T P 2:6=xe. For the case of sudden passage,

an approximate analytic solution is developed by linearizing the equation of motion in the laboratory frame of reference. For the

adiabatic case, an approximate analytic solution is obtained by linearizing the equation of motion in a rotating frame of reference

that follows the resultant field B ¼ Bp þ Be.

� 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

The earth�s-field NMR technique differs from stan-

dard techniques in that a single current-carrying coil

suffices to polarize the sample, to manipulate the direc-

tion of the nuclear magnetization, and to detect the free-

precession signal. In essence, the sample coil is oriented

with its axis perpendicular to the earth�s magnetic field,
and a large current produces a buildup of the nuclear
magnetization. After the current is cut off, this magne-

tization precesses about the earth�s field, inducing an

emf in the coil. The resulting signal is then amplified,

displayed, and measured.

In the first paper of this series [1] we referenced a

variety of applications of this technique. These include

earth�s-field magnetometry, research on spin relaxation

in liquids and solutions, self-diffusion measurements,
and well logging. Magnetic resonance imaging has also

been shown to be possible using earth�s-field NMR. In

[1] we then analyzed the details of the motion of the
magnetization M during linear cutoff of the polarizing

field Bp and developed the relationship between the

cutoff rate and the ensuing orientation of the magneti-

zation. The cutoff rate can range from very fast (sudden

passage), which leaves M precessing close to the plane

perpendicular to the earth�s field, to very slow (adiabatic

passage), in which M remains more or less aligned along

the resultant field during the cutoff.
From a practical point of view, however, it is essential

that the analysis be carried out for a time dependence of

Bp that can be achieved readily with electronic circuitry.

The latter invariably involves not only the resistance and

inductance of the coil, but also its stray capacitance.

Accordingly, in a later paper [2] we analyzed the motion

of M under the more readily attainable condition in

which the Bp cutoff makes a transition from linear to
damped oscillatory decay, with the initial oscillation

amplitude large compared to the earth�s field Be. In this

case the motion of M depends on the characteristics of

the damped oscillation. We then showed that, by

appropriate adjustment of the damping, it is possible to
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attain the condition of idealized sudden passage, which
leaves the magnetization precessing precisely perpen-

dicular to the earth�s field. Qualitatively, this is achieved
by utilizing the overshoot of the damped oscillation to

tip the magnetization back into the x–y plane. We

showed that this not only maximizes the ensuing free-

precession signal, but also comes close to minimizing the

duration of ringing that interferes with detection of the

signal.
In the present paper we analyze the motion of M

when the decay of Bp is overdamped and develop the

condition for achieving adiabatic passage in minimum

time. This method of rotating M to lie along the direc-

tion of the earth�s field has been used by several research
groups [3,4], who then used the traditional 90� pulse

method to observe the magnetization at a later time. As

an alternative to a 90� pulse, one could use a short
‘‘inspection pulse,’’ whereby Bp is turned on adiabati-

cally and then off suddenly, thereby leaving the mag-

netization precessing in the x–y plane [5]. This and other

nonresonant methods of manipulating the direction of

M, described here and in Refs. [1,2], are made possible

by the fact that the coil field is easily made large com-

pared to the earth�s field Be.

2. Overdamped cutoff

Fig. 1 is a schematic diagram of a typical circuit used

to switch the polarizing current on and off in the earth�s-
field NMR experiment [6]. The circuit was discussed in

[2] and is reproduced here for convenience. Capacitor C

represents the stray capacitance of the coil and of the
cable used to connect the coil to the remainder of the

apparatus. In the present application resistance R will be

chosen to produce adiabatic cutoff in minimum time.

With the electronic switch (Fig. 1) closed, polarizing

current flows through the power supply, coil, and

switch. At the end of the polarizing time the switch is

opened; the voltage across the coil reverses and rises

rapidly until the Zener diode begins to conduct,
whereupon the coil current decays linearly toward zero.

Near the end of cutoff the Zener stops conducting. At

that instant the coil current is Vz=R and is decreasing at a

rate Vz=L. These are the initial conditions for the sub-

sequent damped oscillation. For typical coils, with the

damping resistor adjusted to provide near-critical (or
greater) damping, the coil current at the beginning of the

transient will be sufficiently high to produce a coil field

that is still several times larger than the earth�s field.

Thereafter, it is the details of the subsequent transient

that control the motion of M.

In Appendix A it is shown that when the transient is

highly overdamped, the field Bp is given approximately

by

Bp

Be

¼ q0Ce
�s=C: ð1Þ

Here, xe is the precession frequency in the earth�s field, T
is the decay time constant of the overdamped transient,
and we have introduced the dimensionless quantities

s ¼ xet, C ¼ xeT � 2c=x2
0, x0 ¼ ðLCÞ�1=2x�1

e , and c ¼
ð2RCxeÞ�1. The quantity q0 � jdðBp=BeÞ=dsj0 is a di-

mensionless constant that is ameasure of the cutoff rate of

Bp at s ¼ 0 (see Eq. (A.2), Appendix A). Hence, the initial

conditions at the beginning of the transient are

Bp

Be

� �
0

¼ q0C ð2aÞ

and

d

ds
Bp

Be

� �
0

¼ �q0: ð2bÞ

We now consider the case in which the motion of M

is governed by an exponentially decaying transient, with

ðBp=BeÞ 
 1 at time s ¼ 0. Eq. (2a) indicates that this

can be achieved by reducing R (thereby increasing C) or
by increasing Vz (thereby increasing q0), or some com-
bination of the two, with the restriction that q0 
 1 to

ensure that sudden passage can also be obtained by

switching to the appropriate value of R [2]. We are in-

terested in the motion of M during exponential cutoff

and in the conditions that must be met for adiabatic

passage.

3. Numerical solution of the equations of motion

The equation of motion of the magnetization during

the cutoff sequence is

dM

ds
¼ M� B

Be

� �
; ð3Þ

where, as before, time t has been replaced by the di-

mensionless time parameter s ¼ xet. We solve Eq. (3)

subject to the assumption that the coil field Bp at the

beginning of the transient, Eq. (2a), is at least 10 times

the earth�s field. It can then be assumed that the mag-

netization follows the resultant field B adiabatically

during the linear portion of the cutoff ðs < 0Þ and points
in the direction of B at the beginning of the overdamped

transient ðs ¼ 0Þ.
Fig. 1. Schematic diagram of a typical circuit used to switch the po-

larizing field on and off in an earth�s-field NMR experiment.
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Expanding the cross product in Eq. (3) and making
the substitutions Bx ¼ 0, By ¼ Bp, and Bz ¼ Be yields the

coupled differential equations

dMx

ds
¼ My � q0Ce

�s=CMz; ð4aÞ

dMy

ds
¼ �Mx; ð4bÞ

dMz

ds
¼ q0Ce

�s=CMx: ð4cÞ

Eqs. (4a)–(4c) were solved numerically using the fourth-
order Runge–Kutta algorithm. Since the magnitude of

M is arbitrary, we fulfil the condition that M and B

point in the same direction at time s ¼ 0 by taking the

initial conditions to be Mx ¼ 0, Mz ¼ 1, and My ¼ q0C.
Figs. 2a–c show, for q0 ¼ 100, the motion of the mag-

netization M for transients having time constants

C ¼ 0:3, C ¼ 0:6, and C ¼ 1:2. The solid line on the

surface of each sphere shows the path traced out by the
tip of the M-vector as the field Bp decays. The large

value of q0 is chosen so that the resultant field B and

magnetization M both point essentially along the y-axis

at s ¼ 0 for a wide range of values of C. Little change
occurs in the orientations of B and M until Bp drops to

about five times Be. At the instant when Bp=Be ¼ 5, and

at six equally spaced time intervals (duration CÞ there-
after, the orientation of B ¼ Bp þ Be is indicated by
solid black circles along the arc in the y–z plane. The

vectors in Figs. 2a–c show the orientation of M at

the same instants of time. The paths in Fig. 2 follow the

motion of M until the polarizing field Bp falls to less

than 1% of the earth�s field Be, at which point the angle

that M makes with the z-axis is within a few tenths of a

degree of the final precession cone angle.

For Bp decays having short time constants, the motion
of M is qualitatively similar to the case of linear cutoff

a b

c d

Fig. 2. Motion of magnetization M during cutoff for an initial cutoff rate q0 ¼ 100 and for three different time constants for the decay of the

overdamped transient: (a) C ¼ 0:3, (b) C ¼ 0:6, (c) C ¼ 1:2, (d) same as in (c), but shown from the point of view of an observer in the rotating frame

(see Appendix B).
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described in [1]. As the time constant increases, the

magnetization follows Bmore and more closely and ends

up precessing about Be in a small cone of angle b. In Fig.
2c it is noteworthy that even thoughM does not follow B

very closely, the passage is adiabatic from a practical

point of view, in that the final cone angle b is small. In
Fig. 3 we have plotted b, obtained from the numerical

solutions, versus C. For decays having short time con-

stants ðCK 0:4Þ the cone angle decreases approximately

linearly with C, while for slow decays ðCJ 1Þ the cone
angle decreases exponentially with C. The limiting forms,

discussed further in Appendixes B and C, are

b ¼ 2e�ðp=2ÞC ðCJ 1Þ; ð5Þ
and

b ¼ ð1� CÞ p
2

ðCK 0:4Þ: ð6Þ

The fact that bðC) has these simple limiting forms sug-

gests that closed-form solutions may be possible. In

Appendix B we attempt a solution for the adiabatic

limit, and in Appendix C for the sudden passage limit.
The results are shown as dashed curves in Fig. 3. For the

sudden passage limit we were able to derive Eq. (6), but

the solution for the adiabatic limit led to simultaneous

differential equations, one of which contained a small

nonlinear term. Neglecting this term leads to the corre-

sponding dashed curve in Fig. 3.

4. Experimental results

The apparatus described in [6] was used to perform

an experimental test of these results. Damping resistor R

(Fig. 1) was varied, and for each value of resistance the
decay time constant of the overdamped transient and

the amplitude (V) of the ensuing free-precession signal

were measured. The final precession cone angle was then

calculated from b ¼ sin�1ðV =Vmax), where Vmax is the

signal amplitude obtained from sudden passage, as de-

scribed in [2]. For large damping, the coil current decays

were exponential. Near critical damping, where the

overdamped decays were noticeably nonexponential, we
measured the time constants at the ends of the decay—

i.e., after the short time constant component had be-

come negligibly small. The experimental results are

shown in Fig. 3. The agreement between the predicted

and measured results is very good, especially considering

the difficulty of aligning the coil axis to make it exactly

perpendicular to the earth�s magnetic field. Such align-

ment is critical: numerical solutions of the equations of
motion show that, for slow cutoffs near C ¼ 2:5, varying
the angle between the coil axis and the earth�s field be-

tween 89� and 91� results in a variation of about 0.4�, or
�8%, in the cone angle of the ensuing free precession.

5. Discussion

The details of the motion of M depend on the

time dependence of Bp and on the initial conditions.

Exceedingly complex motions are possible, even for

relatively simple physical situations, such as a B-field

of constant magnitude rotating at constant angular

velocity.

For the numerical integration, it is necessary that the

successive time increments used be short compared to
the instantaneous precession period. This comes about

because the changes in the instantaneous precession

cone angle depend on whether the M-vector happens to

be ahead of, behind, or to the side of the rotating B-

vector. In the problem at hand, this results in a kind of

‘‘Zitterbewegung’’—tiny oscillations of M at frequencies

near the instantaneous precession frequency. Although

these oscillations are much too small to show up in Figs.
2a–c, they are, in fact, involved in determining the rate

at which the precession cone angle changes in time.

Mathematically, this manifests itself in the complicated

integrand in Eq. (B.16) (Appendix B), which oscillates at

these high and variable frequencies in certain ranges of

the variable of integration. Thus the ‘‘area under the

curve’’ also oscillates rapidly, but accumulates only

slowly in these regions.
Sudden and adiabatic passage occur, respectively,

when da=dt is large or small compared to the precession

frequency x at the instant in question. The initial part of

the motion ofM is always adiabatic, and for exponential

decay of Bp the final part is adiabatic as well. The final

cone angle depends on the degree of ‘‘nonadiabaticity’’

throughout the passage. A good measure of ‘‘nonadi-

1
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Fig. 3. Dependence of the free-precession cone angle on time constant

of the decay of the overdamped switching transient. Values represented

by the solid line were obtained from numerical solutions of Eqs. (4a)–

(4c). Cone angles computed using the approximate Eq. (B.16) derived

in Appendix B are denoted by the long dashed line. For both cases,

calculations were made assuming q0 ¼ 100. The short dashed line

shows cone angles computed using Eq. (6). The symbol � indicates

cone angles measured using the apparatus described in [6].
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abaticity’’ is the ratio of da=dt and x, or, in dimen-
sionless units, the ratio ðda=dsÞ=ðx=xeÞ. It is readily

shown that da=ds ¼ �ð2CÞ�1 sin 2a (see Appendix B)

and ðda=dsÞ=ðx=xeÞ ¼ �ðCÞ�1 sin a cos2 a, so that if

CJ 1 the motion of M is adiabatic throughout the

passage. Also, the maximum da=ds occurs when

a ¼ 45�, and the maximum (da=dsÞ=ðx=xeÞ occurs when
a ¼ sin�1ð1=

ffiffiffi
3

p
Þ � 35�. The latter is also the value of a

at which the resultant field in the rotating frame (Ap-
pendix B) is tilted furthest from the y0-axis. A charac-

teristic of the motion ofM is that the instantaneous cone

angle (angle between M and B) passes through a maxi-

mum before settling down to its final value b.
For a typical earth�s-field NMR instrument, it is the

details of the switching transient at the end of rapid

cutoff of the polarizing field that ultimately determine

whether the cutoff is sudden or adiabatic. Either may be
achieved by a suitable choice of damping resistor in

parallel with the coil. As the damping resistance is

gradually reduced, the transition from sudden to adia-

batic passage occurs over a sufficiently broad range so

that practically any desired final free-precession cone

angle can readily be obtained. As can be seen from the

results in Fig. 3, near-perfect adiabatic passage (mag-

netization aligned within 2� of the earth�s field) can be
achieved for time constants T P 2:6=xe. For a typical

precession frequency of 2.1 kHz, T ¼ 2:6=xe corre-

sponds to a time constant of about 0.2ms. For q0 ¼ 100,

about 10 time constants are required for Bp to decay to

0.01Be, so that the adiabatic cutoff takes about 2ms.

This is short compared to the shortest relaxation times

(T2 � 20ms) that can be measured with the earth�s-field
technique.

Appendix A

Fig. 1 shows the essential elements of the circuit that

determines the time dependence of the decay of the coil

current after the Zener diode stops conducting. Here, R

is an equivalent parallel resistance that includes all re-

sistive losses, and C represents the stray capacitance of

the coil, connecting cable, etc. Since the coil is high-Q,

the resistance R is essentially the same as that of the
physical resistor used to produce overdamping.

The circuit functions as previously described. While

the Zener diode is conducting, the polarizing field along

the axis of the coil decreases at a constant rate

dBp

dt
¼ �ðB=IÞVz

L
; ðA:1Þ

where ðB=IÞ is the field-to-current ratio for the coil. By

introducing the dimensionless time parameter s ¼ xet,
where xe represents the proton precession frequency in
the earth�s field Be, the linear cutoff rate of the polarizing

field, in dimensionless units, can be written in the form

q0 �
d

ds
Bp

Be

� �
0

����
���� ¼ ðB=IÞVz

LxeBe

: ðA:2Þ

Capacitor C, which is charged to the Zener voltage Vz
during the linear portion of the cutoff, prevents the

cutoff rate from changing instantaneously when the

Zener diode stops conducting at time t ¼ 0. Therefore,

q0 also represents the initial cutoff rate at the beginning

of the overdamped transient at t ¼ 0.

For tP 0 the coil current is given by the solution to

the differential equation [8]

d2iL
dt2

þ 1

RC
diL
dt

þ 1

LC
iL ¼ 0: ðA:3Þ

The solution to Eq. (A.3) for the overdamped case,

subject to the initial conditions iL ¼ i0 ¼ Vz=R and

diL=dt ¼ �Vz=L, is

iL ¼
i0

cþ � c�
cþ

��
� x2

0

2c

�
e�c�s � c�

�
� x2

0

2c

�
e�cþs

�
:

ðA:4Þ

In Eq. (A.4) we have introduced the dimensionless pa-
rameters c ¼ ð2RCxeÞ�1, x0 ¼ ðLCÞ�1=2x�1

e ; cþ ¼ cþ
ðc2 � x2

0Þ
1=2
, and c� ¼ c � ðc2 � x2

0Þ
1=2
. The field Bp that

this current produces, as a multiple of the earth�s field, is

Bp

Be

¼ ðB=IÞiL
Be

¼ 2cq0

x2
0ðcþ � c�Þ

cþ

��
� x2

0

2c

�
e�c�s � c�

�
� x2

0

2c

�
e�cþs

�
:

ðA:5Þ
For small damping, with c only slightly greater than

x0, we have cþ � c�, and the two terms inside the

brackets in Eq. (A.5) have approximately the same
amplitude and decay at about the same rate. For large

damping, such that x2
0=c

2 � 1, we make the approxi-

mations cþ � 2c and c� � x2
0=2c. Eq. (A.5) then sim-

plifies to

Bp

Be

¼ q0Ce
�s=C; ðA:6Þ

where the time constant for the exponential decay, in

dimensionless units, is C ¼ 1=c� � 2c=x2
0. The time

constant in seconds is T ¼ C=xe.

To verify the validity of the above approximation, we

obtained the equations of motion ofM using, in place of

Eq. (A.6), the more exact Eq. (A.5), thus taking into
account the fact that the overdamped transient is actu-

ally the difference of two terms that decay at different

rates. We chose q0 ¼ 32:2 and x0 ¼ 3:86, which are the

measured parameters for the earth�s-field NMR appa-

ratus described in [6], and solved the equations numeri-

cally for various assumed values of the damping constant

c. A graph of the cone angles b obtained from these

solutions, plotted versus the dimensionless time constant
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C ¼ 1=c�, was found to be virtually indistinguishable
from the solid-line graph in Fig. 3. Thus, the simplifying

assumption of a pure exponential decay is well justified

in practice, and the value assumed for q0 is not critical as
long as the condition (Bp=BeÞ0 
 1 is satisfied.

Appendix B

We seek solutions to Eqs. (4a)–(4c), valid for slow

cutoffs, for which the magnetization follows B nearly

adiabatically and ends up precessing about the earth�s
field in a small cone having cone angle b. Since the

magnitude of M is constant, transforming to spherical

coordinates leads to two coupled differential equations

in the spherical angles h and u. However, these equa-

tions are tractable only in the small-angle approxima-

tion, and this approximation must remain valid

throughout the passage. This suggests seeking solutions

in a rotating frame that follows the resultant field
B ¼ Bp þ Be. This rotating (primed) frame is shown in

Fig. 4. The y0-axis is chosen to be along the resultant

field, and it rotates about the x–x0 axis, starting initially
in very nearly the same direction as the polarizing field

Bp. As Bp decays toward zero, the y0-axis approaches its
final orientation along the z-axis, which is in the direc-

tion of the earth�s field Be. The magnitude of the angular

velocity of rotation is jda=dtj, where a (Fig. 4) is the
polar angle between the resultant field B and the earth�s
field Be. In the rotating frame, in addition to the resul-

tant field B along the y0-axis, there is a fictitious field

along the þx0-axis given, in dimensionless units, by

Bf

Be

¼ i0
da
ds

����
����; ðB:1Þ

where, as before, we have made the substitution s ¼ xet.
As viewed in the rotating frame, the magnetization M0

tends to precess about the vector sum of B and Bf , which

is the resultant field in the rotating frame. In the adia-

batic limit da=ds is small, so that M0 never strays far

from the y 0-axis. Hence, in the primed frame, the com-

plements of the spherical angles h0 and u0 will be small

throughout adiabatic passage.

Using Eqs. (1) and (B.1), and noting from Fig. 4 that
tan a ¼ Bp=Be, we obtain

Bf

Be

¼ i0

2C
sin 2a: ðB:2Þ

Near the beginning and end of the overdamped tran-

sient, where a approaches 90� and 0�, respectively, the
fictitious field Bf approaches zero. Near those extremes,
the angular velocity of the rotating frame is very small.

The fictitious field is a maximum when a ¼ 45�, which
occurs at the instant when Bp ¼ Be.

The equation of motion in the rotating frame

dM0

ds
¼ M0 � B

Be

�
þ Bf

Be

�
ðB:3Þ

is somewhat easier to solve if, instead of finding M0 as a

function of time, we seek instead solutions for M0 as a
function of a. By using Eqs. (1) and (B.2), and noting

from Fig. 4 that B=Be ¼ sec a, we obtain by straight-

forward substitution into Eq. (B.3) the equations of

motion

dM 0
x

da
¼ 2C
sin 2a cos a

M 0
z; ðB:4aÞ

dM 0
y

da
¼ �M 0

z; ðB:4bÞ

dM 0
z

da
¼ �2C
sin 2a cos a

M 0
x þM 0

y : ðB:4cÞ

Following a procedure similar to that used in [1,2], we
solve Eqs. (B.4a)–(B.4c) by changing variables and ex-

pressing M 0
x; M 0

y , and M 0
z in terms of h0

c and u0
c, the

complements of the spherical polar angles h0 and u0 in

the rotating frame (see Fig. 4). We obtain

dh0
c

da
¼ cosu0

c �
2C

sin 2a cos a
sinu0

c ðB:5Þ

and

du0
c

da
¼ 2C
sin 2a cos a

tan h0
c cosu

0
c þ tan h0

c sinu0
c: ðB:6Þ

Linearizing Eqs. (B.5) and (B.6) about h0
c ¼ 0 and

u0
c ¼ 0 gives the system

dh0
c

da
¼ 1� u0

c

dn
da

ðB:7Þ

Fig. 4. Rotating frame of reference with the y0-axis directed along the

resultant field B ¼ Bp þ Be. As the transient decays and the polarizing

field shrinks from Bp 
 Be to Bp � 0, the primed frame rotates

through approximately 90�.
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and

du0
c

da
¼ h0

c

dn
da

þ h0
c u

0
c; ðB:8Þ

where the function n is defined by

nðaÞ ¼ C sec a
�

þ ln tan
a
2

�
: ðB:9Þ

If we neglect the product h0
cu

0
c in Eq. (B.8), Eqs. (B.7)

and (B.8) can be solved by introducing a complex

function f defined by f ¼ h0
c þ iu0

c and by showing that f

is a solution to

df
da

¼ 1þ if
dn
da

: ðB:10Þ

A general solution for f is

h0
c þ iu0

c ¼ einðaÞ
Z a

a0

e�inðsÞ dsþ ceinðaÞ; ðB:11Þ

where a0 ¼ tan�1½ðBp=BeÞ0� ¼ tan�1½q0C� � p=2, and c is

a constant of integration. Assuming M0 points along the

y0-axis in the direction of B at time t ¼ 0, we require

c ¼ 0. Equating the real and imaginary parts of Eq.

(B.11) gives the solutions

h0
cðaÞ ¼ cos nðaÞ

Z a

a0

cos nðsÞdsþ sin nðaÞ
Z a

a0

sin nðsÞds

ðB:12Þ
and

u0
cðaÞ ¼ sin nðaÞ

Z a

a0

cos nðsÞds� cos nðaÞ
Z a

a0

sin nðsÞds:

ðB:13Þ
Near the end of the transient, the polarizing field and
angle a shrink toward zero. For small angles, nða) can be
approximated by C½1þ lnða=2Þ�, and a approaches

Bp=Be ¼ q0Ce
�s=C. Furthermore, numerical integration

shows that, for a � 0, the cosine integrals in Eqs. (B.12)

and (B.13) are large compared to the sine integrals.

Neglecting the latter, we obtain

h0
cðsÞ �

Z 0

a0

cos nðsÞds
� �

cos C 1

��
þ ln

q0C
2

�
� s

�

ðB:14Þ
and

u0
cðsÞ �

Z 0

a0

cos nðsÞds

0
B@

1
CA sin C 1

��
þ ln

q0C
2

�
� s

�
:

ðB:15Þ
Eqs. (B.14) and (B.15) apply after the transient has es-

sentially decayed to zero and describe a precession of

magnetization M0 at frequency x=xe ¼ 1, with cone

angle b given by

b ¼
Z 0

a0

cos nðsÞds
����

���� �
Z 0

p=2
cos nðsÞds

����
����

¼
Z 0

p=2
cos C sec s

�h
�������

þ ln tan
s
2

�i
ds

�������
: ðB:16Þ

Here, a0 ¼ tan�1½q0C� � p=2. Eq. (B.16) was evaluated
numerically using Mathematica. The results for q0 ¼
100 are plotted in Fig. 3 as a long dashed curve. The

agreement with the Runge–Kutta solution in the fixed

frame is surprisingly good over the whole range of val-

ues of C investigated, even for C-values that correspond
to final cone angles greater than 30�, for which the

small-angle approximations are clearly not justified.

Inspection of Fig. 3 shows that there is a small sys-

tematic discrepancy between the cone angles computed

from Runge–Kutta in the fixed frame and those calcu-

lated using the small-angle approximation in the rotating

frame. The discrepancy persists even for C > 2, for which

the small-angle approximations should be very good.
The discrepancy is due to neglecting the product term

h0cu
0
c in Eq. (B.8). When this term is retained and Eqs.

(B.7) and (B.8) are solved numerically, the results for

slow decays (C P 2) agree almost exactly with the results

obtained from the numerical solution in the fixed frame.

Appendix C

We seek solutions to Eqs. (4a)–(4c), valid for rapid

cutoffs, for which the magnetization remains close to the
x–y plane. Following a procedure similar to that in

Appendix B, we express Mx; My , and Mz in terms of hc
and uc, the complements of the spherical polar angles h
and u in the fixed frame. After linearizing the equations

about hc ¼ 0 and uc ¼ 0 we obtain

dhc

ds
¼ uc

d1
ds

ðC:1Þ

and

duc

ds
¼ 1� hc

d1
ds

; ðC:2Þ

where the function f is defined by

fðsÞ ¼ �q0C
2e�s=C: ðC:3Þ

Eqs. (C.1) and (C.2) can be solved by introducing a

complex function f defined by f ¼ uc þ ihc and by

showing that f is a solution to

df
ds

¼ 1þ if
d1
ds

: ðC:4Þ

A general solution to Eq. (C.4) is

uc þ ihc ¼ eifðsÞ
Z s

0

e�ifðsÞ dsþ ceifðsÞ; ðC:5Þ
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where c is a constant of integration. Assuming the
magnetization points in the direction of the resultant

field B at time s ¼ 0, we obtain, using Eq. (2a),

c ¼ i

q0C
e�ifð0Þ: ðC:6Þ

Substituting Eq. (C.6) into Eq. (C.5) and equating the
real and imaginary parts gives the solutions

hcðsÞ ¼SðsÞ
Z s

0

CðsÞds� CðsÞ
Z s

0

SðsÞds

þ 1

q0C
½Cð0ÞCðsÞ þ Sð0ÞSðsÞ� ðC:7Þ

and

ucðsÞ ¼SðsÞ
Z s

0

SðsÞdsþ CðsÞ
Z s

0

CðsÞds

þ 1

q0C
½Sð0ÞCðsÞ � Cð0ÞSðsÞ�; ðC:8Þ

where we have made the substitutions

CðsÞ ¼ cos fðsÞ ðC:9Þ
and

SðsÞ ¼ sin fðsÞ: ðC:10Þ
For the case analyzed in this paper 1=q0C � 1. There-

fore, the last terms in Eqs. (C.7) and (C.8) make only

small contributions to the computed values of hc and uc.

For large s, such that s 
 C, we make the approxima-
tions CðsÞ � Cð1Þ ¼ 1, and SðsÞ � Sð1Þ ¼ 0. Neglect-

ing the small contribution from the last term, we obtain

from Eq. (C.7) the approximate result

hcð1Þ � �
Z 1

0

SðsÞds ¼
Z 0

1
sin fðsÞds: ðC:11Þ

Using Eq. (C.3), and changing variables by making the
substitution u ¼ fðsÞ, Eq. (C.11) can be written

hcð1Þ � CSiðq0C
2Þ; ðC:12Þ

where Si is the sine integral function

SiðxÞ ¼
Z x

0

sin u
u

du: ðC:13Þ

For large values of q0C
2, Siðq0C

2) approaches p=2 [7].

Hence, the final cone angle of the free precession is given

by

b ¼ p
2
� hcð1Þ � ð1� CÞ p

2
: ðC:14Þ

For rapid exponential decays that leave the magnetiza-

tion near the x–y plane (sudden passage) the final cone

angle decreases linearly with time constant.

References

[1] B.F. Melton, V.L. Pollak, T.W. Mayes, B.L. Willis, Condition for

sudden passage in the earth�s-field NMR technique, J. Magn.

Reson. A 117 (1995) 164–170.

[2] B.F. Melton, V.L. Pollak, Optimizing sudden passage in the

earth�s-field NMR technique, J. Magn. Reson. A 122 (1996) 42–

49.

[3] J. Stepi�ssnik, V. Er�zzen, M. Kos, NMR imaging in the earth�s
magnetic field, Magn. Reson. Med. 15 (1990) 386–391.

[4] P.T. Callaghan, C.D. Eccles, J.D. Seymour, An earth�s field nuclear
magnetic resonance apparatus suitable for pulsed gradient spin

echo measurements of self-diffusion under Antarctic conditions,

Rev. Sci. Instrum. 68 (1997) 4263–4270.

[5] B.F. Melton, Proton spin relaxation in liquid CHCl3 and in

H2O–D2O solutions of chromium(III), PhD Thesis, Oklahoma

State University, 1970.

[6] B.F. Melton, V.L. Pollak, Instrumentation for the earth�s field

NMR technique, Rev. Sci. Instrum. 42 (1971) 769–773.

[7] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathemati-

cal Functions with Formulas, Graphs, and Mathematical Ta-

bles, US Government Printing Office, Washington, DC, 1964,

p. 232.

[8] A discussion of damped parallel resonant LC circuits may be found

in many textbooks dealing with linear circuit analysis. See, for

example L.S. Bobrow, in: Elementary Linear Circuit Analysis,

second ed., Oxford University Press, New York, 1987, p. 280.

22 B.F. Melton, V.L. Pollak / Journal of Magnetic Resonance 158 (2002) 15–22


	Condition for adiabatic passage in the earth&rsquo;s-field NMR technique
	Introduction
	Overdamped cutoff
	Numerical solution of the equations of motion
	Experimental results
	Discussion
	Appendix A
	Appendix B
	Appendix C
	References


